Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 14(3): 82, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38375510

RESUMO

Fungal chitosan (FCH) is superior to crustacean chitosan (CH) sources and is of immense interest to the scientific community while having a high demand at the global market. Industrial scale fermentation technologies of FCH production are associated with considerable challenges that frequently restrict their economic production and feasibility. The production of high quality FCH using an underexplored fungal strain Cunninghamella echinulata NCIM 691 that is hoped to mitigate potential future large-scale production was investigated. The one-factor-at-a-time (OFAT) method was implemented to examine the effect of the medium components (i.e. carbon and nitrogen) on the FCH yield. Among these variables, the optimal condition for increased FCH yield was carbon (glucose) and nitrogen (yeast extract) source. A total of 11 factors affected FCH yield among which, the best factors were screened by Plackett-Burman design (PBD). The optimization process was carried out using the response surface methodology (RSM) via Box-Behnken design (BBD). The three-level Box- Behnken factorial design facilitated optimum values for 3 parameters-glucose (2% w/v), yeast extract (1.5% w/v) and magnesium sulphate (0.1% w/v) at 30˚C and pH of 4.5. The optimization resulted in a 2.2-fold higher FCH yield. The produced FCH was confirmed using XRD, 1H NMR, TGA and DSC techniques. The degree of deacetylation (DDA) of the extracted FCH was 88.3%. This optimization process provided a significant improvement of FCH yields and product quality for future potential scale-up processes. This research represents the first report on achieving high FCH yield using a reasonably unfamiliar fungus C. echinulata NCIM 691 through optimised submerged fermentation conditions. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03919-6.

2.
Front Bioeng Biotechnol ; 10: 1047279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578512

RESUMO

Increasing food demand by the ever-growing population imposes an extra burden on the agricultural and food industries. Chemical-based pesticides, fungicides, fertilizers, and high-breeding crop varieties are typically employed to enhance crop productivity. Overexploitation of chemicals and their persistence in the environment, however, has detrimental effects on soil, water, and air which consequently disturb the food chain and the ecosystem. The lower aqueous solubility and higher hydrophobicity of agrochemicals, pesticides, metals, and hydrocarbons allow them to adhere to soil particles and, therefore, continue in the environment. Chemical pesticides, viz., organophosphate, organochlorine, and carbamate, are used regularly to protect agriculture produce. Hydrophobic pollutants strongly adhered to soil particles can be solubilized or desorbed through the usage of biosurfactant/s (BSs) or BS-producing and pesticide-degrading microorganisms. Among different types of BSs, rhamnolipids (RL), surfactin, mannosylerythritol lipids (MELs), and sophorolipids (SL) have been explored extensively due to their broad-spectrum antimicrobial activities against several phytopathogens. Different isoforms of lipopeptide, viz., iturin, fengycin, and surfactin, have also been reported against phytopathogens. The key role of BSs in designing and developing biopesticide formulations is to protect crops and our environment. Various functional properties such as wetting, spreading, penetration ability, and retention period are improved in surfactant-based formulations. This review emphasizes the use of diverse types of BSs and their source microorganisms to challenge phytopathogens. Extensive efforts seem to be focused on discovering the innovative antimicrobial potential of BSs to combat phytopathogens. We discussed the effectiveness of BSs in solubilizing pesticides to reduce their toxicity and contamination effects in the soil environment. Thus, we have shed some light on the use of BSs as an alternative to chemical pesticides and other agrochemicals as sparse literature discusses their interactions with pesticides. Life cycle assessment (LCA) and life cycle sustainability analysis (LCSA) quantifying their impact on human activities/interventions are also included. Nanoencapsulation of pesticide formulations is an innovative approach in minimizing pesticide doses and ultimately reducing their direct exposures to humans and animals. Some of the established big players and new entrants in the global BS market are providing promising solutions for agricultural practices. In conclusion, a better understanding of the role of BSs in pesticide solubilization and/or degradation by microorganisms represents a valuable approach to reducing their negative impact and maintaining sustainable agricultural practices.

3.
Front Bioeng Biotechnol ; 10: 917105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017342

RESUMO

Phytopathogens pose severe implications in the quantity and quality of food production by instigating several diseases. Biocontrol strategies comprising the application of biomaterials have offered endless opportunities for sustainable agriculture. We explored multifarious potentials of rhamnolipid-BS (RH-BS: commercial), fungal chitosan (FCH), and FCH-derived nanoparticles (FCHNPs). The high-quality FCH was extracted from Cunninghamella echinulata NCIM 691 followed by the synthesis of FCHNPs. Both, FCH and FCHNPs were characterized by UV-visible spectroscopy, DLS, zeta potential, FTIR, SEM, and Nanoparticle Tracking Analysis (NTA). The commercial chitosan (CH) and synthesized chitosan nanoparticles (CHNPs) were used along with test compounds (FCH and FCHNPs). SEM analysis revealed the spherical shape of the nanomaterials (CHNPs and FCHNPs). NTA provided high-resolution visual validation of particle size distribution for CHNPs (256.33 ± 18.80 nm) and FCHNPs (144.33 ± 10.20 nm). The antibacterial and antifungal assays conducted for RH-BS, FCH, and FCHNPs were supportive to propose their efficacies against phytopathogens. The lower MIC of RH-BS (256 µg/ml) was observed than that of FCH and FCHNPs (>1,024 µg/ml) against Xanthomonas campestris NCIM 5028, whereas a combination study of RH-BS with FCHNPs showed a reduction in MIC up to 128 and 4 µg/ml, respectively, indicating their synergistic activity. The other combination of RH-BS with FCH resulted in an additive effect reducing MIC up to 128 and 256 µg/ml, respectively. Microdilution plate assay conducted for three test compounds demonstrated inhibition of fungi, FI: Fusarium moniliforme ITCC 191, FII: Fusarium moniliforme ITCC 4432, and FIII: Fusarium graminearum ITCC 5334 (at 0.015% and 0.020% concentration). Furthermore, potency of test compounds performed through the in vitro model (poisoned food technique) displayed dose-dependent (0.005%, 0.010%, 0.015%, and 0.020% w/v) antifungal activity. Moreover, RH-BS and FCHNPs inhibited spore germination (61-90%) of the same fungi. Our efforts toward utilizing the combination of RH-BS with FCHNPs are significant to develop eco-friendly, low cytotoxic formulations in future.

4.
J Basic Microbiol ; 62(5): 533-554, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35076126

RESUMO

Sugarcane (Saccharum officinarum)-a prominent cash crop accounts for around 80% production of sugar worldwide. However, the productivity of sugarcane is declining (~40%) due to the attack of a perilous fungus-Fusarium moniliforme responsible for pokkah boeng (PB) disease. Presently, chemical methods are incisive where their harmful effects on living organisms cannot be overlooked. Introduction of disease-resistant cultivars and other biocontrol measures protect sugarcane to some extent. The multifunctional biopolymers like chitosan (CH) and its derivatives (irradiated chitosan [IRC]), chitooligosaccharides (CO) and nanochiotosan (NCH) offer endless opportunities to spring numerous aids for crops. CH is a dynamic plant elicitor with multifarious antimicrobial properties. The current review unleashes information on CH and its derivatives in controlling PB and fungal diseases of sugarcane along with other crops. We highlight the strategies that deploy CH as "biofungicide" to mitigate F. moniliforme. CH delays the postharvest decay in fruits (apple, strawberry, mango, banana, papaya) and vegetables (tomato, finger millet, capsicum, fenugreek) (~500-1000 ppm). NCH has been utilized as a foliar spray successfully (0.1%-1%) to protect staple crops (wheat, rice, maize) as well. Overall, NCH based strategies are noteworthy to protect sugarcane and other crops.


Assuntos
Quitosana , Micoses , Saccharum , Materiais Biocompatíveis , Produtos Agrícolas , Grão Comestível , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Saccharum/microbiologia
5.
Int J Biol Macromol ; 139: 1212-1223, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31415851

RESUMO

Chitosan, being one of the most promising biological macromolecules, has an immense scope in agriculture to boost crop growth and defense responses. In this study, chitosan was exposed to gamma rays in order to obtain a low molecular weight derivative. Viscometric characterization showed a sharp decrease in molecular weight and FTIR based analysis confirmed retention of structural integrity of the polymer upon gamma irradiation. Assessments of various physiological and biochemical attributes were carried out on sugarcane plantlets that were subjected to progressive water deficit stress. The irradiated chitosan was found to differentially ameliorate water deficit stress tolerance against that of normal chitosan through positive modulation of various gas exchange parameters alongside significant improvement in relative tissue water content, SOD activity, soluble sugars and adenine energetics. Furthermore, application of irradiated chitosan significantly reduced cell membrane damage, lipid peroxidation, H2O2 and free-proline accumulations. This is the first report on the use of gamma irradiated chitosan to alleviate water deficit stress tolerance in sugarcane. Overall comparative assessments showed that differential plant responses were triggered upon foliar application of normal and gamma irradiated chitosan in sugarcane plants grown under water deficit stress conditions.


Assuntos
Secas , Raios gama , Folhas de Planta/efeitos da radiação , Saccharum/fisiologia , Saccharum/efeitos da radiação , Estresse Fisiológico/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos da radiação , Osmose/efeitos da radiação , Fotossíntese/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Prolina/metabolismo , Saccharum/metabolismo , Superóxido Dismutase/metabolismo , Água/metabolismo
6.
Int J Biol Macromol ; 131: 435-444, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30876903

RESUMO

Chitosan, a functional biopolymer, was irradiated with 100 kGy gamma irradiation and used to access its physical, antioxidant, plant growth promoting and antimicrobial properties. The molecular weight of chitosan reduced to 82.2 kDa from 337.7 kDa after irradiation. UV-Vis spectroscopy and FTIR results revealed slight changes in chitosan skeleton after irradiation but the degree of acetylation of both chitosan was ~18%. DSC profile indicated a prominent decline in enthalpy and energy for phase transition, TGA indicated shift in decomposition temperature, while XRD analysis showed a reduction in chitosan crystallinity after irradiation. DPPH and ABTS radical scavenging activity of chitosan (2-10 mg/mL) enhanced significantly by 1.25-1.45 and 1.80-3.14 folds after irradiation. There was a considerable improvement in morphological parameters (number of leaves, nodes, height, fresh weight and dry weight) and biochemical parameters (chlorophyll, total soluble sugars and soluble proteins content) of in vitro potato plant in chitosan supplemented medium at 75 mg/L concentration than the control. The minimum inhibitory concentration of normal and irradiated chitosan for Alternaria spp. was 2500 and 2000 mg/L and for Fusarium spp. was 1750 and 1500 mg/L, respectively. IC50 value of normal and irradiated chitosan for Fusarium spp. was 1387.9 ±â€¯9.2 and 954.3 ±â€¯6.1 mg/L, and for Alternaria spp. was 1536.1 ±â€¯24.3 and 1416.8 ±â€¯3.5 mg/L, respectively.


Assuntos
Quitosana/química , Raios gama , Antifúngicos/química , Antifúngicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Fenômenos Químicos , Quitosana/farmacologia , Testes de Sensibilidade Microbiana , Peso Molecular , Desenvolvimento Vegetal/efeitos dos fármacos , Solubilidade , Análise Espectral , Termogravimetria
7.
Carbohydr Polym ; 210: 289-301, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30732765

RESUMO

Oligo-chitosan (82.20 kDa) was prepared from chitosan (337.73 kDa) by application of 100 kGy γ-irradiation. UV-vis spectroscopy, FTIR, XRD, DSC and TGA analyses showed typical properties of chitosan with slight variations after γ-irradiation. Degree of deacetylation of chitosan and oligo-chitosan was 82%, while 1,1-diphenyl-2-picrylhydrzyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging activity were 10.01 ± 0.18 and 43.30 ± 3.75 µMTE/mL and 13.64 ± 0.16 and 79.93 ± 4.44 µMTE/mL, respectively. Chitosan and oligo-chitosan was applied as foliar spray on potato plants to analyze growth promoting and stress tolerance inducing effects. Improvement in shoot height and number of nodes was observed after foliar spray of chitosan and oligo-chitosan at 50-75 mg/L. Furthermore, membrane stability index and malondialdehyde reduced while chlorophyll, carotenoids, proline, reducing and total sugars, enhanced considerably. The antioxidant and defense enzymes CAT, POD, SOD, chitinase and chitosanase showed prominent increment. Overall results indicated that chitosan (75 mg/L) and oligo-chitosan (50 mg/L) can augment plant growth and induce defense mechanism for drought stress tolerance in potato.


Assuntos
Quitosana/química , Quitosana/farmacologia , Raios gama , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/crescimento & desenvolvimento , Estresse Fisiológico , Antioxidantes/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Hidrólise , Peroxidação de Lipídeos/efeitos dos fármacos , Peso Molecular , Prolina/metabolismo , Solanum tuberosum/metabolismo , Solanum tuberosum/fisiologia , Solubilidade , Estresse Fisiológico/efeitos dos fármacos , Açúcares/metabolismo , Temperatura , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...